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This paper examines intrusive Boussinesq gravity currents, propagating into a
continuously stratified fluid. We develop a model, based on energy arguments, to
predict the front speed of such an intrusive gravity current from a lock release. We
find that the depth at which the intrusion occurs, which corresponds to the level
of neutral buoyancy (i.e. the depth where the intrusion density equals the stratified
fluid density), affects the front speed. The maximum speeds occur when the intrusion
travels along the top and bottom boundaries and the minimum speed occurs at
mid-depth. Experiments and numerical simulations were conducted to compare to
the theoretically predicted values, and good agreement was found.

1. Introduction

Gravity currents occur when fluid of one density propagates horizontally into fluid
of a different density. Intrusive gravity currents (IGCs) form when a fluid of one
density intrudes and travels in a stratified fluid. This may be along a sharp interface
between two fluids of different densities, one greater and one less than the intrusion
density. Alternatively, the fluid into which the IGC intrudes may be continuously
stratified, causing the gravity current to travel along its level of neutral buoyancy (i.e.
the height at which the density of the intrusion is the same as that of the ambient
fluid).

IGCs along sharp interfaces have been studied extensively. Holyer & Huppert
(1980) developed the first theoretical description of IGCs based on mass, momentum
and energy conservation in a control volume. The validity of this theory is limited to
the case where the interface ahead of the IGC is not deflected. Experimental studies
have been conducted by Britter & Simpson (1981), de Rooij, Linden & Dalziel (1999),
Lowe, Linden & Rottman (2002) and Sutherland, Kyba & Flynn (2004). Cheong,
Kuenen & Linden (2006) developed a model based on energy arguments to predict
the front speed of an IGC, even when deflection of the interface does occur.

In this paper we consider the propagation of a Boussinesq high-Reynolds-number
intrusion into a continuously stratified fluid. While this type of IGC is similar to an
interfacial IGC, there are some fundamental differences. In a continuously stratified
fluid internal waves of a different nature to the interfacial wave in a two-layer system
can be generated. Some researchers believe that these waves can extract significant
energy from the IGC (e.g. Munroe & Sutherland 2006). Experiments which examine
bottom-propagating gravity currents in a two-layer fluid (Rottman & Simpson 1989)
and a linearly stratified fluid (Maxworthy et al. 2002) identified supercritical and
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FIGURE 1. (a) A schematic of the initial setup for the intrusion where py < p; <pr. (b) A
schematic of an intruding current with p; = %(PU + pr) after the lock has been removed. In

this case the neutral level is at Ay = %H.

subcritical regimes, where the IGC travels faster or slower, respectively, than the
fastest internal wave. Cheong et al. (2006), who assume perfect conversion of potential
energy into kinetic energy of the IGC, and Flynn & Linden (2006), who studied the
kinematics of the interfacial wave, suggest that minimal energy is extracted by the
wave in the sharp interface case. One issue we address is whether this holds true for
the continuously stratified case.

IGCs may be created in the laboratory using a lock release where the density of the
intruding fluid p; on one side of the lock lies between the maximum and minimum
densities of the stratified fluid, o, and py, respectively, on the other side of the gate
(figure 1). We consider the case where the stratification is uniform and the density
of the stratified fluid is given by ps(z) =pr + (z/H)(py — pr), where H is the depth
of the fluid and z is vertically upwards. When the lock gate is removed, the fluid of
density p; will travel along its level of neutral buoyancy hy, where ps(z="hy) = p;.

In the special case where dense fluid propagates along the bottom boundary, the
flow corresponds to a dense gravity current. In a uniformly stratified fluid Maxworthy
et al. (2002) predict that in the early stages after the release the gravity current will
travel at a constant velocity Uy which, from dimensional analysis, takes the form

Uy = FNH, (1.1)

where N =(—g/po)dp/dz is the (constant) buoyancy frequency of the stratification.
Here F is a Froude number and p, is a constant representative density.

In the ideal energy-conserving case Benjamin (1968) showed that, for an ambient
fluid of uniform density F =0.5, which matches closely to experimentally measured
values of F =0.48. (Shin, Dalziel & Linden 2004). In the stratified case the Froude
number is defined as F =U/[g((p; — pa)/po)H]'/?, where p, is the uniform density of
the ambient fluid. For boundary currents in a linearly stratified fluid experiments and
theoretical work by Maxworthy et al. (2002) and Ungarish (2006) suggest values of
F of 0.266 and 0.25, respectively. The latter is based on a model that assumes that
the relevant density difference driving the current is p; — ps(z = %h), corresponding
to the average ambient density over the depth of the current. This is equivalent to
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defining the Froude number for the uniform ambient case using the average ambient
density over the depth of the current. For an energy-conserving current & = %H , and
s0 p; —pu =4(p; — ps(%h)) when p; = p;. Thus the factor of 4 is incorporated in (1.1),
leading to a reduction in F by a factor of 2. The experimental value of 0.266 found
by Maxworthy et al. (2002) is in reasonable agreement with this argument.

In this paper we seek to extend this result to an intrusion propagating at any depth
in a uniformly stratified fluid. In particular, we wish to determine how the speed of
the IGC depends on p; (or equivalently /). We present a prediction of the intrusion
speed based on an energy argument in §2. We describe laboratory experiments and
two-dimensional numerical simulations in § 3 and compare the results with the theory
in §4.

2. Model

We consider the flow generated when the lock is removed from the system depicted
in figure 1. There is a hydrostatic pressure imbalance between the lock and stratified
fluid, causing the lock fluid to intrude into the stratified fluid. The resulting exchange
flow looks similar to that depicted in figure 1(b), where the lock fluid intrudes to the
right and there is backflow above and below the intrusion. The intrusion accelerates
from rest and then propagates with a constant velocity U. The goal of this work is
to predict this constant speed of the intrusion. At later times we expect the intrusion
to decelerate, but that phase is beyond the scope of this paper.

In lock-exchange experiments IGCs form as a result of potential energy stored in
the original lock configuration. Therefore, in the spirit of Cheong et al. (2006), we
consider an energy model to predict the front speed U for the uniformly stratified
case.

The available potential energy per unit areca E due to the horizontal density
difference, taking the level of zero buoyancy iy of the intrusion as the reference level,
is

0 H—hy
E = g/ (ps — pi)z dz’ + g/ (0i — ps)z dz,
0

—hy
= 1((or — p)ghiy + (0 — pu)g(H — hy)?). (2.1)
Note here that, taking the intrusion height as the reference height, —hy <z’ < H —hy

and so ps(z') = p; +(z'/hn)(p; — pr). We define the equilibrium depth, kg, as the depth
of minimum available potential energy, i.e.

dE
— =0. 2.2
dhn |-, (22)
It is straightforward to show from (2.1) that
hg = % H, (2.3)

so that the case shown in figure 1(b), with Ay = %H, corresponds to the IGC with
minimum available potential energy. Yih (1965) suggested that the kinetic energy of
gravity currents and intrusions comes entirely from the conversion of the available
potential energy as the density field adjusts. The results of Cheong et al. (2006) suggest
that this is a good assumption for IGCs along a sharp interface in a two-layer fluid.
In this spirit, we assume that a perfect conversion of energy takes place for IGCs in
continuously stratified fluids.
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Since the minimum potential energy occurs at the mid-depth of the channel, we
expect the slowest propagating IGC to occur at this height, with the fastest intrusions
being boundary currents. Hence we choose a quadratic form for the intrusion velocity

2
=0 (o () o (P ) 24

where U is the speed of the intrusion, Ug is the speed of the intrusion at the
equilibrium height 4 and a, b and ¢ are the constant coefficients of the quadratic.
This quadratic form is motivated by the quadratic dependence of available potential
energy in (2.1) on hy, along with the assumption that kinetic energy scales on available
potential energy.

For Boussinesq currents, symmetry implies that the gravity currents propagating
along the top and bottom boundaries will travel at the same speed, implying that
b=0. Also, by definition the velocity of the intrusion at the equilibrium height A is
the equilibrium speed Ug, which gives ¢ = 1. In order to close this system we need to
find ¢ and Ug.

To do so we use the result (1.1). By symmetry, the intrusion at the mid-depth may
be considered as two boundary propagating currents, travelling in a stratified medium
of depth %H . Hence, the speed of the equilibrium intrusion is

Ug = 1FNH = 1U,. (2.5)

Thus the IGC at the centre of the channel travels at exactly half the speed of the
boundary propagating currents and this condition determines a. Therefore, from (2.3),

1 hy —1H\? 172
U= 2FNH<12<Hz> +1> . (2.6)

3. Experiments and numerics
3.1. Numerics

For an incompressible Boussinesq fluid of uniform viscosity v in two dimensions in
the (x, z)-plane, the governing equations are

V-u=0, (3.1)

% = —plozf + v Vu, (3.2)

Dw =_ploaaf—i‘;'+vv2w, (3.3)
D

?f - % 2, (3.4)

where U= (u, w) is the velocity, g is gravitational acceleration, py is a characteristic
reference density, P is the hydrostatically adjusted pressure, Sc is the Schmidt number,
p(x, z, t)is the fluid density, o’ is a perturbation from the average background density.

For the simulations reported here, v=0.01cm?s™' and Sc=1. For salt water
Sc=v/k > 1 where « is the diffusivity of salt and, although the choice of Sc =1 leads
to a significant overestimation for the diffusivity of salt, this choice is necessary to
maintain numerical stability and does not lead to significant changes in the dynamics
of the flow (Maxworthy et al. 2002; Ungarish & Huppert 2002).
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FIGURE 2. Image of an IGC from the numerical solution. (a) The stratified field with blue
corresponding to the lightest fluid and red corresponding to the densest. (») The intrusion fluid
is shown in black. In this case N =1 and hy =0.7. A comparison of the panels in (a) shows
that the isopycnal surfaces are deflected downwards by the motion of the intrusion.

A slightly modified version of the open source DNS algorithm Diablo (full
details available at http://renaissance.ucsd.edu/fccr/software/Diablo.html) was used
to solve the above equations. The code in its current form requires periodic boundary
conditions in the streamwise direction. Clearly the flow here is not periodic in the
x-direction, and in order to achieve periodicity to enable a Fourier decomposition of
the flow variables in this direction a domain twice the length of the domain shown
in figure 1 was chosen. This allows a reflectional symmetry about the mid-plane in
the initial condition (Sutherland, Flynn & Dohan 2004), ie. lock fluid starts in
the middle and propagates equally in both directions from the middle. In the
wall-normal direction periodicity does not occur. Derivatives in this direction were
evaluated using centred finite differences with no-slip boundary conditions at the top
and bottom boundaries.

A mixed method using a third-order, low-storage Runge-Kutta—Wray (RKW3)
and a Crank—Nicholson (CN) scheme was used to advance the flow in time with
At =0.001s (Bewley 1999; Bewley, Moin & Temam 2001). Diffusive terms in the
wall-normal direction were treated implicitly, while all other terms were treated
explicitly. Uniform grids were selected in all directions.

As with the laboratory experiments, the flow is stationary at r=0. In order to
minimize Gibbs phenomena in the streamwise direction, the vertical interfaces that
define the lateral boundaries of the lock are smoothed using a hyperbolic tangent
profile, the effect of which can be seen in the density contours in figure 2 at r =0.25s.

The layer densities are chosen such that the Reynolds number, Re =NH?/v, is
sufficiently large (ie. >10%) that viscous effects are negligible and the flow exhibits
the characteristic features of two-dimensional turbulent gravity currents such as the
roll-up of Kelvin—Helmholtz billows behind the gravity current head. Simulations
were carried out for N =1, 1/,/2 and 1.
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FiGUure 3. Image of an IGC from experiments. In this case N =1 and hy =0.8 H. Note that
the isopycnal surfaces, marked with flourescent dye, are deflected downwards ahead of the
intrusion. The dye layers in the ambient (right) side of the tank are initially located at intervals
of h/H =0.25, 0.5 and 0.75. The original heights of the dye layers are shown by the thin
horizontal solid white lines in order to illustrate the induced displacement.

3.2. Experiments

The experimental tank was 182cm long, 23cm wide and 30cm deep. For all
experiments the total fluid height H=20cm and the gate was positioned at
Lok =30cm from the endwall (figure la). Thus the intrusions propagated about
S5lock lengths and so were expected, and observed, to travel at constant speeds
after the initial acceleration from rest. The flow was recorded with a CCD camera,
connected to a PC for image analysis, and positioned 3.4m in front of the tank.
The back of the tank was covered with tracing film and illuminated with two 95W
fluorescent lamps.

The stratified fluid was produced by the double-bucket method (Oster 1965). The
linear stratification was verified with a conductivity probe. The experiment was started
by pulling the gate vertically out of the tank. The flow images were captured by the
camera every 1/24s, and analysed using DigiFlow (Dalziel 2004); see figure 3 for an
example. The attenuation of light passing through the tank was used to determine
the density field in the flow. From this density field, the cross-tank mean density,
integrated vertically in the z-direction, was calculated for every x-position and time
t. The front speed of the intrusive gravity current was calculated from the resulting
x—t plot (for further details of this method see Shin et al. 2004).

4. Results

After an initial acceleration from rest, the intrusions were observed to travel at
constant speeds until they reached the end of the tank. The results for the intrusion
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FIGURE 4. Comparison of dimensionless intrusion velocity (U/NH) for (a) numerical simula-
tions and (b) experiments to model predictions. theory F =0.266 (-), Theory F =0.25(—-),
experiments (O, N>=1s"2; x, N>=1s7?) and numerical predictions (x, N*=1s72; +,
N?=1s72; 0, N*=1s72). The light grey horizontal dashed lines on each plot represent
from top to bottom the first-, second- and third-mode long-wave speed respectively.

front speed of the numerical simulations and experiments are shown and compared to
the theoretical prediction in figure 4. Two theoretical curves are shown, corresponding
to (2.6) for F =0.266 and F =0.25 as discussed above.

The numerical results depicted in figure 4(a) collapse over the range of N> =0.25—
1572 over the entire range 0 <hy < H. Additionally, they agree well with the values
predicted from (2.6), lying between the two theoretical curves, suggesting that the
energy model presented here is accurate.

The experimental results, while not as close in agreement with the theory as the
numerical ones, also collapse and compare favourably. The discrepancies with the ex-
perimental results probably stem from the initial condition. In the experiments, the
removal of the lock gate generates some vorticity and mixing between the lock and
ambient fluid, which is not present in the numerical simulations and appears to affect
the current in a non-negligible manner. This effect of the initial condition has been
observed in other gravity current work (e.g. Patterson et al. 2006), and we observe a
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consistent asymmetry with currents in the upper half of the tank (hy < %H ) travelling
slower than expected.

Internal gravity waves were generated in the experiments and numerical simulations
(figures 2 and 3). The wave speed for a long wave with vertical mode number
n is NH/nm and these speeds are shown in figure 4 for n=1, 2 and 3. Thus all
intrusions are subcritical with respect to mode-1 waves, subcritical to mode-2 waves
for 0.27 <hy <0.73 and supercritical for all higher modes, irrespective of hy. The
fluid ahead of the intrusion is deflected by mode-1 waves for all Ay and mode-2
waves over a limited range of hy centred at mid-depth. We acknowledge that the
observed internal waves have finite horizontal wavelength; however, the long-wave
speeds provide upper bounds on the wave speeds and, therefore, on the supercriticality
of the intrusion.

5. Conclusion

In this paper we consider Boussinesq intrusive gravity currents, intruding into a
continuously stratified fluid with constant buoyancy frequency N. We conduct lock
release experiments where fluid of intermediate density intrudes into the stratified
ambient fluid. The fluid will intrude at height Ay, its level of neutral relative buoyancy.
The goal was to predict the speed of the front of the IGC during the initial phase
when it travels at constant speed. We developed a model based on energy arguments
and showed that the maximum velocities occur when the current travels along the
top and bottom boundaries, with the minimum intrusion velocity occurring when the
current travels at mid-depth. The mid-depth velocity is exactly half of the maximum
velocity. In order to verify the validity of our model we conducted a full series of
numerical and laboratory experiments, where we measured intrusion velocities which
displayed good agreement with the values predicted by our model.

These results imply that the role of internal gravity waves generated by the intrusion
is subtle. Ungarish & Huppert (2002, 2006) and Ungarish (2005), based on a one-
layer shallow water model, illustrate that the energy associated with internal waves
for boundary currents is small compared to the available potential energy. Since our
model assumes a direct scaling of available potential energy to kinetic energy for all
cases and the agreement between model and experiments is good, this suggests that
the waves carry little energy for all intrusion heights. A similar conclusion for the
energy content of the interfacial wave for an IGC propagating in a two-layer fluid
was drawn by Cheong et al. (2000).

The fact that the internal waves do not carry much energy does not mean that
they do not play an important role in the flow. In fact, Maxworthy et al. (2002) and
Sutherland & Nault (2007), who discuss the interaction of these waves with the head
of the current, illustrate that the role of the waves is important. In the two-layer case,
Flynn & Linden (2006) show that the deflection of the interface ahead of the IGC
caused by the wave changes the upstream conditions that the current sees. By taking
this change into account they were able to modify the Holyer & Huppert (1980)
control-volume analysis and obtain accurate predictions for the intrusion speed.

The same mechanism appears to occur in the continuously stratified case. All
intrusions are subcritical to mode-1 waves (figure 4) and this mode will be generated
whenever hy # %H , causing a vertical deflection of the upstream conditions. Intrusions
with 0.27 < hy <0.73 are also subcritical to mode-2 waves, but the deflections caused
by these are asymmetrical about the mid-depth of the channel and so cause only small
net displacement of the isopycnals. Thus we expect that a control-volume analysis for
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the continuously stratified case which accounts for the changed upstream conditions
caused by the mode-1 long internal wave should lead to a prediction for the intrusion
speed. This, however, is no trivial task and is left for future work.
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